Video Repeat Recognition and Mining by Visual Features

نویسندگان

  • Xianfeng Yang
  • Qi Tian
چکیده

Repeat video clips such as program logos and commercials are widely used in video productions, and mining them is important for video content analysis and retrieval. In this chapter we present methods to identify known and unknown video repeats respectively. For known video repeat recognition, we focus on robust feature extraction and classifier learning problems. A clustering model of visual features (e.g. color, texture) is proposed to represent video clip and subspace discriminative analysis is adopted to improve classification accuracy, which results in good results for short video clip recognition. We also propose a novel method to explore statistics of video database to estimate nearest neighbor classification error rate and learn the optimal classification threshold. For unknown video repeat mining, we address robust detection, searching efficiency and learning issues. Two detectors in a cascade structure are employed to efficiently detect unknown video repeats of arbitrary length, and this approach combines video segmentation, color fingerprinting, self-similarity analysis and Locality-Sensitive Hashing (LSH) indexing. A reinforcement learning approach is also adopted to efficiently learn optimal parameters. Experiment results show that very short video repeats and long ones can be detected with high accuracy. Video structure analysis by short video repeats mining is also presented in results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of Visual Events using Spatio-Temporal Information of the Video Signal

Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Video-based face recognition in color space by graph-based discriminant analysis

Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...

متن کامل

Data Mining for Identification of Forkhead Box O (FOXO3a) in Different Organisms Using Nucleotide and Tandem Repeat Sequences

 Background: Deregulation of FOXO3a gene which belongs to Forkhead box O (FOXO) transcription factors, can cause cancer (e.g. breast cancer). FOXO factors have important role in ubiquitination, acetylation, de-acetylation, protein-protein interactions and phosphorylation. Understanding the regulation and mechanisms of FOXO3a can lead to cancer treatment. The aim of this study recent association...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010